Influence of counterions on the interaction of pyridinium salts with model membranes.
نویسندگان
چکیده
The interaction of pyridinium salts (PS) with red blood cells and planar lipid membranes was studied. The aim of the work was to find whether certain cationic surfactant counterion influence its possible biological activity. The counterions studied were Cl-, Br-, I-, ClO4-, BF4- and NO3-. The model membranes used were erythrocyte and planar lipid membranes (BLM). At high concentration the salts caused 100% erythrocyte hemolysis (C100) or broke BLMs (CC). Both parameters describe mechanical properties of model membranes. It was found that the efficiency of the surfactant to destabilize model membranes depended to some degree on its counterion. In both, erythrocyte and BLM experiments, the highest efficiency was observed for Br-, the lowest for NO3-. The influence of all other anions on surfactant efficiency changed between these two extremities; that of chloride and perchlorate ions was similar. Some differences were found in the case of BF4- ion. Its influence on hemolytic possibilities of PS was significant while BLM destruction required relatively high concentration of this anion. Apparently, the influence of various anions on the destructive action of PS on the model membrane used may be attributed to different mobilities and radii of hydrated ions and hence, to different possibilities of particular anions to modify the surface potential of model membranes. This can lead to a differentiated interaction of PS with modified bilayers. Moreover, the effect of anions on the water structure must be taken into account. It is important whether the anions can be classified as water ordering kosmotropes that hold the first hydration shell tightly or water disordering chaotropes that hold water molecules in that shell loosely.
منابع مشابه
Spotlight: Imidazolium-based salts: With Y-aromatic counterions
Meysam Yarie was born in 1987 in Malayer/ Hamedan, Iran. He received his B.Sc. in Applied Chemistry from Malek-Ashtar University of Technology and M.Sc. in Organic Chemistry from Kurdistan University under the supervision of Dr. Kamal Amani. He received his Ph.D. from Bu-Ali Sina University under the supervision of Professor Mohammad Ali Zolfigol. He is currently working towards his Post-Doctor...
متن کاملThe Ultrafiltration Performance of Cellulose Acetate Asymmetric Membranes: A New Perspective on the Correlation with the Infrared Spectra
Integral asymmetric cellulose acetate (CA) membranes were casted by phase-inversion with formamide varying content - 22, 30 and 34% - as pore promoter. These membranes, CA-22, CA-30 and CA-34, were analyzed by infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to investigate the porous membrane matrix influence on the polymer/water/solute interactions and the selective ultrafi...
متن کاملSpotlight: Imidazolium-based salts: With Y-aromatic counterions
Meysam Yarie was born in 1987 in Malayer/ Hamedan, Iran. He received his B.Sc. in Applied Chemistry from Malek-Ashtar University of Technology and M.Sc. in Organic Chemistry from Kurdistan University under the supervision of Dr. Kamal Amani. He received his Ph.D. from Bu-Ali Sina University under the supervision of Professor Mohammad Ali Zolfigol. He is currently working towards his Post-Doctor...
متن کاملCharge inversion on membranes induced by multivalent-counterion fluctuations
Based on the two state model, we study the condensation of counterions on oppositely charged membranes in the presence of monovalent salts. Using the Gaussian approximation, we evaluate the contribution of two-dimensional charge fluctuation to the free energy, from which the number of condensed counterions is determined self-consistently. It is shown that charge inversion can occur upon the add...
متن کاملPhotochemical Studies on Degradation of Cetyl Pyridinium Chloride (Cationic Surfactant) in Aqueous Phase Using Different Photocatalysts
The photocatalytic process using semiconductors with a nanostructure is one of the technologies usedfor the destructive oxidation of organic compounds such as surfactants. In this paper, thephotocatalytic degradation of Cetyl pyridinium chloride (CPC), was investigated in aqueous phaseusing various semiconductors such as titanium dioxide (Ti02), zinc oxide (ZnO), stannic oxide(Sn02). The degrad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zeitschrift fur Naturforschung. C, Journal of biosciences
دوره 54 11 شماره
صفحات -
تاریخ انتشار 1999